Main Page | Namespace List | Class Hierarchy | Class List | File List | Namespace Members | Class Members | File Members | Related Pages

Two-stage Smoothing Retrieval Evaluation Application

This application runs retrieval experiments (with/without feedback) in exactly the same way as the application RetEval, except that it always uses the two-stage smoothing method for the initial retrieval and the KL-divergence model for feedback. It thus ignores the the parameter retModel.

It recognizes all the parameters relevant to the KL-divergence retrieval model, except for the smoothing method parameter SmoothMethod which is forced to the "Two-stage Smoothing" (value of 3) and JelinekMercerLambda, which gets ignored, since it automatically estimates the value of JelinekMercerLambda using a mixture model. For details on all the parameters, see the documentation for RetEval.

To achieve the effect of the completely automatic two-stage smoothing method, the parameter DirichletPrior should be set to the estimated value of the Dirichlet prior smoothing parameter using the application EstimateDirPrior, which computes a Maximum Likelihood estimate of DirichletPrior based on "leave-one-out".


Generated on Tue Jun 15 11:02:58 2010 for Lemur by doxygen 1.3.4