|
Public Member Functions |
| | OfflineCluster (const lemur::api::Index &ind, enum ClusterParam::simTypes simType=ClusterParam::COS, enum ClusterParam::clusterTypes clusterType=ClusterParam::CENTROID, enum ClusterParam::docModes docMode=ClusterParam::DMAX) |
| | initialize the cluster methods
|
| | ~OfflineCluster () |
| | clean up
|
| vector< Cluster * > * | kMeans (vector< lemur::api::DOCID_T > docIds, int numParts=2, int maxIters=100) |
| vector< Cluster * > * | kMeans (Cluster *cluster, int numParts=2, int maxIters=100) |
| | k-means caller responsible for deleting contents of return vector.
|
| vector< Cluster * > * | bisecting_kMeans (vector< lemur::api::DOCID_T > docIds, int numParts=2, int numIters=5, int maxIters=100) |
Private Member Functions |
| bool | compareClusterSets (Cluster **, Cluster **, int n) |
| | Are two sets of clusters equal?
|
| vector< lemur::api::DOCID_T > | selectSeeds (vector< lemur::api::DOCID_T > docIds, int num) |
| | Choose num seeds randomly from docIds.
|
| Cluster * | chooseSplit (vector< Cluster * > *working) |
| | Choose largest cluster from working to split.
|
| double | scoreSet (vector< Cluster * > *working) |
| | Score sum of within cluster similarity over a set of clusters.
|
Private Attributes |
| const SimilarityMethod * | sim |
| | Similarity Method to use.
|
| ClusterFactory * | factory |
| | Cluster factory.
|
| const lemur::api::Index & | index |
| | Database containing the collection to operate on.
|